
Applying NMAL OSiRIS to Network Slices on SLATE

The Network Management Abstraction Layer (NMAL) on
SLATE provides services for curating a near real-time model of
the network as well as applying rules for the management and
orchestration of the Open Storage Research Infrastructure
(OSiRIS). SLATE represents a platform that allows for Services
Layer At The Edge, specifically distributed science applications
which deploy from a curated application catalog. To support
these applications, NMAL includes topology discovery through
active (SDN table inspection), and passive (LLDP sniffing)
agents. Passive agents also extract resource state metadata.
The network state is collected through plugins pulling from
compatible measurement sources and managed by a network
orchestration component called Flange. Recent efforts have
allowed NMAL services to execute on the SLATE service
deployment and orchestration platform.

Policies are defined in NMAL with the Flange network orchestration language. Flange uses
declarative syntax to define a goal state on the network. The compilation stage generates a
difference graph and registers it as a requested network state. A Flange daemon - flanged -
tracks changes to the network, including newly registered difference graphs. When a new
state is detected, the program is run against the new network state.

The behavior of the circuit is defined by the program, but enacted and enforced by the flange
daemon. The resulting forwarding rules are generated entirely by flanged and are subject to
the active network model. Evaluation may be triggered by a new policy, but also results from
disruptions in the network, such as chronic congestion or link failure.

With NMAL, circuits can be defined by source and destination, or by property, or some
composition of the two. Additionally, the modifications to the network are made through
back-end agents which interpret a generic netpath intermediate representation. As such,
multiple back-end agents may operate on the policy at once on different devices. An
Openflow switch can be programmed with the same netpath as a P4 switch as long as a
compatible interpreter exists.

Network Management on SLATE

The NMAL topology discovery application uses the zof Openflow micro-framework to interrogate match-action rules within attached openflow switches. In addition, extra topological information is
scraped from LLDP packets routed through the controller. This information is used to generate a graph representing the attached network’s topology. Graph edges and vertices are annotated with
descriptive metadata from passive information scraped from LLDP packets and active measurement agents such as perfSonar and BliPP, a measurement agnostic framework used on NMAL hosts to
collect utilization statistics. Resource metadata is heterogeneous and polymorphic in nature, links may or may not contain bandwidth utilization or window average latency measurements depending on
the availability of measurement agents.

On the Internet2 SLATE testbed, each host runs a perfSonar instance that provides periodic bandwidth and latency measurements. Network orchestration policies can draw from this topological
metadata to make more nuanced decisions when generating circuits. In our tests on the SLATE testbed, we predicated circuit creation and routing on bandwidth measurements between Atlanta and
Cleveland.

NMAL components execute within docker containers on the SLATE deployable services
platform. Each service registers with a centralized registry for service discovery. When the
NMAL containers are run on SLATE, each agent queries the related community of services
and begins collecting topological and measurement data and exposes public API endpoints.
One goal is to allow NMAL to be distributed in a number of dynamic environments using
SLATE with minimal manual reconfiguration.

perfSonar

Openflow

perfSonar

Openflow

perfSonar

Openflow

perfSonar

Openflow
perfSonar

Openflow

perfSonar

Openflow

UNIS

Flanged

Topo Disc.
Controller

SLATE Internet2 Slice Resources

NMAL Containers

src_ip4: yyy.yyy.yyy.yyy
dst_ip4: yyy.yyy.yyy.yyy
FORWARD
 PORT 104 -> 102

src_ip4: xxx.xxx.xxx.xxx
dst_ip4: yyy.yyy.yyy.yyy
FORWARD
 PORT 102

src_ip4: yyy.yyy.yyy.yyy
dst_ip4: yyy.yyy.yyy.yyy
FORWARD
 PORT 104 -> 102

src_ip4: xxx.xxx.xxx.xxx
dst_ip4: yyy.yyy.yyy.yyy
FORWARD
 PORT 101

src_ip4: yyy.yyy.yyy.yyy
dst_ip4: yyy.yyy.yyy.yyy
FORWARD
 PORT 104 -> 102

src_ip4: xxx.xxx.xxx.xxx
dst_ip4: yyy.yyy.yyy.yyy
FORWARD
 PORT 104

src_ip4: yyy.yyy.yyy.yyy
dst_ip4: xxx.xxx.xxx.xxx
FORWARD
 PORT 103

src_ip4: xxx.xxx.xxx.xxx
dst_ip4: yyy.yyy.yyy.yyy
FORWARD
 PORT 103

let client = { x | x.name == ‘saltlake’ }
let server = { x | x.name == ‘kansas’ }
let rules = { f | f.throughput_bps > 80000000 }

exists client ~rules> server
exists server ~rules> client

Optimal Uncongested
Routing

Possible Alternate
Routing Under Load

Configuration programs written in the network orchestration language, Flange, generate rules for a
provided topology. When run against the SLATE testbed, the program above generates a single
bi-directional circuit between Salt Lake City and Atlanta. This circuit is predicated on the measured
performance of the underlying network. When NMAL detects a spike in bandwidth utilization, the
program is partially re-evaluated and a new set of rules is generated to satisfy the program.

Solutions are generated as needed, and the blue circuit above is resolved only in the case where
the green circuit does not satisfy the program as a result of congestion. Routing rules are also
generated as needed; new rules hide previously established circuits. In the case that the
invalidating congestion abates, the new rules may be removed, revealing existing routes. This
approach minimizes network state mutations and presents NMAL with a unified model of network
behavior.

src_ip4: yyy.yyy.yyy.yyy
dst_ip4: xxx.xxx.xxx.xxx
FORWARD
 PORT 103

src_ip4: xxx.xxx.xxx.xxx
dst_ip4: yyy.yyy.yyy.yyy
FORWARD
 PORT 102

NMAL Network Model Generation and Annotation

NMAL Policy Definition

 Containerizing NMAL on

Supported by
NSF Awards
1541335 and
1724821.

NMAL gives us real-time
feedback into the topology of our
network from hardware switches

and software Open vSwitches Which we’ll use for real-time
network pathing decisions

with Flange rules As a demonstration of the system, NMAL has been applied on SLATE services within a
slice of an Internet2 SDN testbed. NMAL agents were deployed to SLATE running on

this testbed and given access to the testbed’s SDN virtual switches.

Jeremy Musser, Ezra Kissel, Douglas Swany (Indiana University)
Ben Meekhof, Shawn McKee (University of Michigan)

Joe Breen (University of Utah)

